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Abstrad-A theoretical and experimental study is carried out on the effect of the secondary flow on heat 
transfer from a uniformly heated helically coiled tube to fully developed laminar flow. Both the centrifugal 
and buoyancy forces are taken into account in the numerical analysis. The solutions cover a wide range 
of Prandtl numbers. The velocity and temperature profiles, the friction factor and heat transfer coefficient 
are obtained. The effects of the secondary flow on heat transfer are divided into three types : those in the 
centrifugal, the buoyant and the composite range; and the boundaries are determined. An approximate 
expression for the peripherally averaged Nusselt number in the composite range is given as a function of 
two simple factors. A comparison is made with the results of the experiments using water. The effect of 

the inclination of the tube is discussed. 

1. INTRODUCTION 

HEAT EXCHANGERS equipped with a helically coiled 
tube are used in various fields of industry, but forced 
convective heat transfer in a tube of this type has not 
been adequately studied. 

Many experimental and theoretical papers [l-8] 
have reported on convective heat transfer in a cir- 
cularly curved tube. It has been made clear that the 
secondary flow resulting from the centrifugal force 
causes the heat transfer coefficient to be significantly 
higher than that in a straight tube. The secondary flow 
is also induced due to the buoyancy force, even in the 
straight tube placed horizontally or inclined, unless 
the temperature gradient in a cross section of the tube 
is negligible [9, lo]. 

In the helically-coiled-tube heat exchanger, the sec- 
ondary flow is induced mainly by the centrifugal force 
(centrifugal range), the buoyancy force (buoyant 
range), or by both (composite range), according to 
operating conditions. The criterion for the conditions 
that distinguish these ranges has been reported by 
some investigators [I l-131. Prusa and Yao [12] pro- 
vided a flow-regime map for a Prandtl number of 
unity, and Lee et al. [13] showed a similar map. 
These maps are based on the results of the numerical 
analyses. Singh and Bell [14] presented an empirical 
expression for the heat transfer coefficient in the com- 
posite range, but their data scatters widely around the 
expression. 

This paper mainly describes a theoretical study on 
the effect of the secondary flow on heat transfer from 
a uniformly heated helically coiled tube to a fully 
developed laminar flow. Both the centrifugal force 
and the buoyancy force are introduced in the govern- 
ing equations. Numerical analysis is extended to cover 
a region with higher Prandtl numbers than those in 
the previous work by the authors [15]. The velocity 

and temperature profiles, the friction factor and the 
heat transfer coefficient are obtained in the composite 
range, and the boundaries of the composite range are 
expressed by simple relations of two parameters. A 
comparison is made with the results of the experiments 
using water. The effect of the inclination of the tube 
axis is discussed. 

2. THEORY AND NUMERICAL ANALYSIS 

2.1. Coordinate system and governing equations 
The system of coordinates used in this analysis is 

shown in Fig. 1. The tube axis is inclined at angle u 

with the horizontal plane (the x-y plane). Point A lies 
on the tube axis. Coordinate 0 is defined as the angle 
between OA and Ox, and r and 4 are the radial and 
angular coordinates taken in the circular cross section 
perpendicular to the tube axis. Point A’ is the pro- 

jection of A on the x-y plane. The angle 0* is that 
between Ox and OA’. Thus, the transformation from 
rectangular coordinates (x, y, z coordinates) to curvi- 
linear coordinates (r, 4, 0 coordinates) is given as 

x = (R+rcos~)cos8*+rsin~sinasin8* (1) 

y = (R+rcosb)sin0*-rsin4sincrcosQ* (2) 

z = RB*tancc+rsin4cosa. (3) 

The following assumptions are made. 

(1) The fluid flow is steady, and hydrodynamically 
and thermally fully developed. 

(2) The density variation is considered in the buoy- 
ancy term alone, and the other physical properties are 
constant. 

(3) The wall heat flux is uniform. 
(4) The radius of the tube is very small in com- 

parison with the coil radius, that is, a/R C-C 1. 
(5) Heat conduction in the direction of the tube axis 
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NOMENCLATURE 

a tube radius u, 0, w velocity components in the r, C/J and 0 

De Dean number, ReJ(a/R) directions 

9 gravitational acceleration u*, v*, w* components of the dimensionless 
h heat transfer coefficient velocity defined by equation (17) 
L distance from the start of heating Z L/2a. 
NU Nusselt number, 2ah/i 

Nub Nusselt number in the case where the Greek symbols 
buoyancy force alone acts inclination angle of the tube axis 

N& Nusselt number in the case where the ; volumetric thermal expansion 
centrifugal force alone acts coefficient 

N% peripheral local Nusselt number A Laplacian operator, 

N%i Nusselt number for Poiseuille flow, a*ja~z+(l/~)a/ar+(i/r2)a2/a~2 
48/11 A* dimensionless Laplacian operator, see 

P pressure equation (16) 
Pr Prandtl number, V/K thermal diffusivity 

4 heat flux : thermal conductivity 

R radius of the coil A friction factor, see equation (10) 

Ra Rayleigh number, gfiza4/m V kinematic viscosity 

Re Reynolds number, 2aw,/v 5* dimensionless vorticity, A*$* 

r,4,@ coordinates P density 
r* dimensionless radial coordinate, r/a axial temperature gradient 
T local temperature ; stream function 

TtIl mixed mean temperature ** dimensionless stream function, $/v. 

TW wall temperature 
T* dimensionless temperature, Subscripts 

(T,-T)l~aRePr C center 
6T temperature difference, T- T, 0 Poiseuille flow. 

!I^ 

0 ,I E e* ’ 
R /’ 

j Y 

cr A’ 

X 

FIG. 1. The coordinate system. 

is neglected, and the peripheral wall temperature is 
uniform. 

Employing the curvilinear coordinates explained 
above and taking into account the above assumptions 
yield the following continuity, momentum and energy 
equations : 

au u I au 
jy+;+--=o 

r a4 
au v au ~2 COS~CICOS~ 

u-+-__--- 

ar r&j r R 
W2 

= - Lap +v 
P ar 

Au-; - 2 * 
r2 a# +j?(GT)gcosasin+ 

(5) 

au v au uu cos2usin$ 

%+;@+t+ R 
W2 

= -‘g+v 
pr a$ 

Au-;+= 
r2 a4 

+j(&“)gcosolcosb 

(6) 

u:+!?= -c*+vAw+j3(ST)gsina (7) 
r a9+ pR a0* 

aT VaT WCOStL ar 
-------icAT uZ+Fi@+ R ae* (8) 

where U, v and w are the radial, peripheral and axial 
components of the fluid velocity, p, p and /I are the 
pressure, density and volumetric thermal expansion 
coefficients of the fluid, respectively, and 6T is the 
temperature difference, T- T,. 

The peripherally averaged Nusselt number Nu and 
friction factor A are defined by 

%a 
N” = i(T,-T,,,) 

A = -4acoscr dp 

PWri R de* (10) 

where q, T,, T,,,, w, and I. are the wall heat flux, wall 
temperature, mixed mean temperature, mean axial 
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velocity and thermal conductivity of the fluid, respec- 
tively. 

Upon eliminating the pressure terms in equations 
(5) and (6), and introducing the stream function $ and 
the vorticity of the secondary flow 5, the governing 
equations are rewritten in dimensionless form as fol- 
lows : 

U*_‘!c +_!?!r 
- r* a4 ’ at-* (11) 

5’ = A*$* (12) 

aT* 
- ar*cos 4 (13) 

aw* v* aw* Re cosu ap* u*_+__=A*w*____ 
ar* r* ad 2 R* ae* 

-2RaT*sinu (14) 

=A*T*+jw* (15) 

where 

a2 i a i a2 
A*=p+~p+~v (16) 

r* = ! 
a’ 

R*=!! &!! 
a’ V’ 

u* = av 
V’ 

w* = w 
W, 

(17) 
T,-T 

T* = ___ 
za Re Pr’ 

The dimensionless parameters Re, Ra, De and Pr are 
the Reynolds, Rayleigh, Dean and Prandtl numbers, 
respectively. 

Equations (9) and (10) can be rewritten as 

1 
Nu = e 

-4~0s~ dp* 
A=R*de* 

(18) 

(19) 

The boundary conditions can be written as 

W* = T* = $I* = 0, r* = a’$*/&*’ at r* = 1 

w*, T*, ti*, c* are finite at r* = 0. (20) 

The centrifugal and buoyancy contributions are 
contained in the second and third terms on the right- 
hand side of equation (13), namely, the momentum 
equation for the secondary flow. The third term on 
the right-hand side of equation (14) represents the 
effect of the component of the buoyancy force in the 
direction of the tube axis. 

o main node 

l sub-node 

FIG. 2. Numerical grids and control volume. 

2.2. Numerical method and computational procedure 
Equations (13)-( 15) become the unsteady-state 

equations by adding the time derivatives of {*, w* 
and T*, respectively. Then, the control volume 
approach is used to derive the finite-difference equa- 
tions. The steady-state solution is obtained as an 
asymptotic solution of this unsteady system of equa- 
tions. Figure 2 shows the mesh system and a control 
volume for the numerical calculation. Each surface of 
the control volume exists at the midpoint between the 
main nodes across a grid axis. The radial velocity u 
or the &component v is calculated at the subnode on 
the surface. The direction of the velocity is per- 
pendicular to the surface. The upwind difference is 
applied to the convection term. This discretization 
concept is equivalent to the tank and tube concept by 
Gosman et al. [16]. 

The radial and angular coordinates are divided into 
20 and 26 intervals, respectively (henceforth, this grid 
size is represented by 20 x 26). The grid spacing is 
equal in the &direction. In the r-direction it is 
unequal, since 6ri/6ri,, = 1.1. This grid size was 
chosen after some calculations were tried with 30 x 34 
and 40 x 26 mesh systems (b&Sri+, = 1.02). The 
boundary condition, equation (20), is converted into 

w* = r;,j = I& = 0, *Z-I j 5x,, = 3gr2 -0.55x-,,j. 
N 

(21) 

The value of boundary vorticity is estimated by the 
second-order form [17,18]. The governing equations 
(1 l)-( 15) cannot be used at the center because of their 
singularities. Therefore, equations (14) and (15) are 
written with the Cartesian coordinates at the center. 
Stream function and vorticity are obtained by aver- 
aging the values at all the neighboring grids. 

There are two alternative expressions for Nusselt 
number. One, which already has been given as equa- 
tion (18), is obtained from the energy balance in the 
direction of the tube axis. This Nusselt number is 
denoted by Nu,. Another is obtained based on the 
temperature gradient at the tube wall, and is denoted 
by Nu2. Thus, one obtains 

r2n /aVil\ 

Nu = -Jo‘ Kk4*=Id4 
2 ZT: 

(22) 
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3. Dependence of the Nusselt number on De Pro 54 for 
Ra = 0. 

FIG. 4. Dependence of the Nusselt number on Re Ra Pr for 
De = 0. 

The mean value of Nu, and Nu, is adopted as the 
peripherally averaged Nusselt number Nu. The 
difference between Nu, and Nu2 is concerned with 
the accuracy of the numerical solution. The relative 
difference JNu, - Nu#Nu, is less than 0.03 in this cal- 
culation. 

An implicit scheme is used at each time step, and 
converged solutions are obtained by iteration. Actu- 
ally, several iterations are executed, since this pro- 
cedure does not require fully convergent values at 
each step. Arriving at the steady-state condition, only 
one iteration is enough to satisfy the following error 
criterion : 

max (IF”+ ’ -iq/(F”+‘I) < 10-S. (23) 

2.3. Numerical results and discussion 
2.3.1. Numerical results for u = 0. Figure 3 shows 

NuJNuO against De Pr”.54, where Nu, denotes the 
Nusselt number for Ra = 0 and NuO is the Nusselt 
number for Poiseuille flow in a straight tube. Since 
the secondary flow is induced only by the centrifugal 
force, the Nusselt number can be expressed as a func- 
tion of Dean and Prandtl numbers. It can be seen that 
Nu,/NuO is well correlated with (De Pr”~54)o~5. Thus, a 
correlation is derived as 

= 1 +[O.l95(De Pro 54)o.5]6. (24) 

The power of the Dean number is equal to Mori and 
Nakayama’s [l] theoretical result using the boundary 
layer approximation. Numerical results obtained by 

Akiyama and Cheng [3] and Kalb and Seader [6] are 
also shown for Pr = 1 in Fig. 3. Experimental results 
for the various Prandtl numbers given by Singh and 
Bell [ 141, and given by Seban and McLaughlin [2] are 
drawn. Singh and Bell’s results are for a/R = 41.7 and 
Pr = 100, whereas they reported a little dependence 
upon coil geometry a/R. Seban and McLaughlin 
reported Nu,,,, and Nu~,~,, which were obtained at 
the outer and inner tube walls, respectively. We have 
used their mean values, assuming Pr = 100. Seban 
and McLaughlin’s result is lower than our correlation. 
However, this discrepancy is not necessarily sig- 
nificant, since the mean value (Nu,,,,+ Nu,,,,)/2 is 

less than the peripherally averaged Nusselt number 
by a factor of 0.8 (Fig. 8(a)). 

Figure 4 shows the variation of Nub/N+, with 

Re Ra Pr, where Nu, is the Nusselt number when 
De = 0. Secondary flow is induced only by the buoy- 
ancy force. Eventually, the Nusselt number is equal 
to that in the heated straight tube. Applying the 
boundary layer approximation, Mori and Futagami 
[19] had a result that the Nusselt number was pro- 
portional to (Re Ra) ‘.’ in the large Re Ra region. Now 
we propose the following correlation which is appli- 
cable in the whole Re Ra Pr region : 

= 1+[0.19(ReRaPr)0~2]4~5. (25) 

Our results agree well with the numerical results given 

by Hwang and Cheng [9]. 
Some computed streamlines for secondary flow, 

isotherms and isometries of the axial velocity are 
shown in Fig. 5 for Pr = 1 and in Fig. 6 for Pr = 100. 
The value of Re Ra Pr increases from (a) to (c) with 
De Pro.54 kept constant. In the case of Ra = 0 (Figs. 
5(a) and 6(a)), only the centrifugal force is induced. 
Therefore, streamlines, etc. are symmetrical with 
respect to the horizontal centerline. They rotate clock- 
wise as Ra increases and the buoyancy effect becomes 
significant. As Re Ra Pr becomes much larger, they 
tend to be symmetrical with respect to the vertical 
centerline. 

The profiles of the streamlines, etc. are also depen- 
dent on the Prandtl number. If Pr = 1, the isometry of 
$* = 0 remains a straight line in the rotating process 
mentioned above. However, in the case of Pr = 100, 
it is distorted near the stagnation point where the 
secondary flow strikes the tube wall. The low-tem- 
perature region, where the magnitude of the dimen- 
sionless temperature is large, exists in the vicinity of 
the outer wall for Ra = 0 and Pr = 1 (Fig. 5(a)). This 
region moves clockwise with increasing Re Ra Pr. For 
Pr = 100, if Ra = 0, two low-temperature regions 
(large dimensionless temperature) exist separately 
near the centers of the upper and lower halves. The 
upper low-temperature region disappears as Re Ra Pr 
is increased. The low-temperature region is located 
between 4 = 71 and 3/2n. The isotherms for Pr = 100 
are greatly skewed compared with those for Pr = 1. 
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(a) DeRo-54=120, ReRaR=O, R=l 

(b) DePr0.54=120, ReRaPr=1.4xl05, Pr=l 

+=JZ 
(inner) 

Cc) DePr0.54=120. ReRaPr=3x105, Pr=l 

FIG. 5. Streamlines for secondary flow (on the left), isotherms (in the middle) and isometries of the axial 
velocity (on the right) ; Pr = 1. 

Figures 7 and 8 show the peripheral variations of 
the relative local Nusselt number Nu,/Nu,. The angle 
at the maximum and minimum of Nu,/Nu, is 0 and R 
for Ra = 0, respectively. These points rotate clockwise 
as Re Ra Pr is increased. In the case of Pr = 1, the 
profile remains almost symmetrical with respect to the 

Nu, maxNu4 m,n line, even if rotation occurs. However, 
for Pr = 100, the symmetrical profile cannot be seen. 
The magnitude of the rotation for Nu,,,, is greater 
than that for NQ,,,~,. 

Figure 9 shows the variation of the friction factor 
with De and Re Ra. Our results agree well with Ito’s 
correlation [20] for Ra = 0 where the buoyancy force 
is absent. Ito’s correlation is an asymptotic one to 
which the friction factor should approach as the Dean 
number increases, that is, the buoyancy force becomes 
less effective. If the Dean number decreases, then the 
buoyancy force becomes dominant, and, conse- 
quently, the friction factor becomes a function of 
Re Ra alone. Therefore, if the value of Re Ra is 

constant, another asymptotic correlation should be 
A/A, = const. In Fig. 9, a transitional region can be 
seen between these two asymptotes. Both the cen- 

trifugal and buoyancy forces are effective in this 
region. It can also be seen that A/h, in the transitional 
region is larger than that for Ra = 0 and that for 
De = 0. 

Figure 10 shows Nu/Nu, against DePr0.54 with 
Re Ra Pr as a parameter. If De Pro.54 becomes smaller, 
the Nusselt number has an asymptotic value depen- 
dent only on Re RaPr. This asymptotic value has 
been given by equation (25). On the other hand, with 
increasing Dean number, Nu/Nu, tends to approach 
the value calculated from equation (24). The tran- 
sitional region exists for the Nusselt number as well 
as the friction factor. The above result is well approxi- 
mated by the following correlation in the whole range 
of De Pro.s4 

E= l+[($-l~+($-lj~‘4. (26) 

Now, it is useful to obtain the boundaries of the 
following three ranges: (a) the centrifugal force is 
dominant ; (b) both the centrifugal and buoyancy for- 
ces are effective (composite range) ; (c) the buoyancy 
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(a) DePrQ.54=120, ReRaR=O, R=lOO 

(b) DeR0.54=120, ReRaR=1.4x105, R=lOO 

(c) DeR0-54=120, ReRaR=3x105, R=lOO 

FIG. 6. Streamlines for the secondary flow (on the left), isotherms (in the middle) and isometries of the 
axial velocity (on the right) ; Pr = 100. 

ReRaR =0 

(a) (b) Cc) 

FIG. 7. Distributions of the relative peripheral local Nusselt numbers (Pr = 1). 

force is dominant. The transitional region in the pre- INu,,,q, -Nu,,,,llNu,,,, = 0.02 (27) 
vious paragraphs is the same as the composite range. 
Boundary Bl is that which divides ranges (a) and (b), where the subscript ‘mono’ means the range where 

and B2 is the boundary which divides (b) and (c). As either force is dominant, and the subscript ‘camp’ 

seen from Fig. 10, there are no obvious distinctions means the composite range. 

between the two neighboring ranges. Therefore, the The points on boundary Bl are plotted in Fig. 11, 

authors define these boundaries by and the points on boundary B2 in Fig. 12. The equa- 
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DeR 0.M =120, Ff =lOO 

ReRaR =O ReRaR =11)X10’ ReRtn? =3X10’ 

(a) (b) Cc) 

FIG. 8. Distributions of the relative peripheral local Nusselt numbers (Pr = 100). 
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FIG. 9. Dependence of the relative friction factor on De with 
Re Ra as a parameter. 
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DePr o.54 

FIG 10. Dependence of the relative Nusselt number on 
De Pr0.54 with Re Ra Pr as a parameter. 

Fc 

FIG. 11. Boundary Bl in the De Pro 54-Re Ra Pr plane. 

tions representing the boundaries can be obtained by 
the least-squares method as follows : 

Bl : De Pro.” = l.O55(Re RaPr)0.42’ (28) 

B2: DePr’.’ = 0.8156(ReRaPr)0~386. (29) 

393 

FIG. 12. Boundary B2 in the DePr0.54-Re RaPr plane. 
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FIG. 13. A contour map showing the heat transfer ranges. 

It is noted that the power of the Prandtl number is 
0.58 and 0.5 on the left-hand side of equations (28) 
and (29), respectively. They are different from the 
power which has been used in equation (24). 

A contour map showing the heat transfer ranges is 
shown in Fig. 13. DePr”.54 and ReRaPr chosen as 
the axes are the same parameters as used in equations 
(24) and (25) respectively. Each contour in the figure 
has a horizontal asymptote on which the buoyancy 
force does not act, and it has a vertical asymptote on 
which the centrifugal force does not act. Boundaries 

Bl and B2 are drawn. The shaded area between them 
is the composite range. Bl and B2 are affected by the 
Prandtl number, and the composite range becomes 
narrow as Pr is increased. This result is caused by the 
difference in the power of Pr between DePr’.” in 
equation (28) and De Pro.’ in equation (29). 

It is of interest to know the angle at which the 
peripherally local Nusselt number Nu, has a 
maximum and minimum in the composite range. 
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FIG. 14. Variation of the peripheral angle at which the 
peripheral local Nusselt number takes a minimum value. 

FIG. 15. Variation of the peripheral angle at which the 
peripheral local Nusselt number takes a maximum value. 

These angles are denoted by &,, and &,in, respec- 
tively. Some examples of the distribution of NUT are 
shown in Figs. 7 and 8. 

As shown in Fig. 14, &,,,, is represented as a function 
of Re Ra Pr/(DePr0.54)2.5. &,in is equal to rr (inner 
wall) when the buoyancy force does not act, and 
decreases to a/2 (top) as it becomes significant. As for 
Pr = 1, dmin correlates well with this parameter alone. 

Figure 15 shows the variation of &,,,. &+, is 2n 
(outer wall) when the buoyancy force is absent, and 

is asymptotic to 1.5~ (bottom) as it becomes 
dominant. In the case of Pr = 1, &,,, can be fairly 
well correlated with Re Ra Pr/(DePr”,54)2.5 alone. 

Thus, e&,.x is nearly opposite to &,,,, as shown in Fig. 
7. However, as Pr becomes large, &,,,, cannot be a 
function of one parameter only. If De Pro.54 becomes 

larger, L,, decreases to less than 1.5x and then 
increases to approach it. 

2.3.2. The effect of the inclination of the tube 
axis. As estimated from equation (13) Decos a and 
Re Ra cos a should be used instead of De and Re Ra, 
respectively, in the case of a # 0. Thus Nu/Nuo is 
shown in Fig. 16 against De Pro 54cos u with Re Ra 
Prcos CI as a parameter, where CI and a/R are fixed as 
constants, namely, n/4 and 0.01, respectively. It seems 
that as De becomes smaller, the relative Nusselt num- 
ber has a minimum and then continues to increase. 
However, this continuous increase is not due to the 
decrease in De, but to a resulting increase in Ra. If 
a/R, a and Re Ra are constant, Ra increases as De 
and accordingly Re are decreased. The increase in Ra 
results in an increase in the third term on the right- 
hand side of equation (14) since a is positive, and 
causes the increase of the Nusselt number in the low 
De region. 

It is of note that the third term of equation (14) 

o/R=O.Ol. LY= n/4 
ReRoPrcosa=105 

10 

DePr c+? cosa 

I. The effect of the inclination on relative Nusselt 
number in a helically coiled tube (G( = n/4). 

mentioned above represents the tube-axial component 
of the buoyancy force. In the case of a < 0, the Nusselt 
number will decrease as De is decreased, since the 
axial component of the buoyancy force acts on the 
fluid against the axial flow and becomes relatively 
significant. Futagami and Abe [lo] ascertained for an 
inclined straight tube where De was zero but Ra was 
finite that the Nusselt number decreased as the incli- 

nation angle became negative. 
If Re Ra Pr and De Pro 54 are constant, Ra decreases 

as Pr is increased, consequently, the relative Nusselt 
number for Pr = 10 takes a lower value than that for 
Pr = 1. The solid line in Fig. 16 is a plot of the fol- 
lowing approximate equation : 

C&= l+[($-lJ+($-lJ3’1’ (30) 

where 

= 1 + [O.l95(De Pro.54 cosa)“.s]6 (31) 

= l+[0.19(ReRaPrcosa)0.2]4.5. (32) 

Equation (30) is the same as equation (26) except that 
De cos a and Re Ra cos a are used in the expressions 
for Nu,/Nu, and Nu,/Nuo instead of De and Re Ra, 
respectively. This equation expressed well the relative 
Nusselt number at least in the centrifugal and com- 
posite ranges. As a decreases, equation (30) becomes 
valid even in the buoyant range. Usually, the incli- 
nation angle is less than 7[/4 in a practical heat ex- 
changer. Therefore, equation (30) will be applicable 
in all the ranges. Equations (28) and (29) can be used 
to express boundaries Bl and B2 if De and Re Ra are 
replaced by De cos a and Re Ra cos a, respectively. 

3. EXPERIMENTS 

Experiments of heat transfer were performed with 
water under the conditions of constant heat flux and 
fully developed flow. The parameters ranged so as to 
cover the composite range. 
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FIG. 17. A schematic diagram of the experimental apparatus. 

3.1. Apparatus andprocedure 
Figure 17 shows the schematic diagram of the 

experimental apparatus. Water is supplied from the 
head tank. It Bows through a deaerator, a %w control 
valve, an inlet mixing cup, a helically coiled tube and 
an outlet mixing cup before being discharged. The 
helically coiled tube was fabricated from a straight 
tube of copper with a devised bender, and hence, its 
cross-section was almost perfectly circular. The tube 
had a 9.9 mm i.d., a wall thickness of 1.2 mm and a 
length of 3.56 m. The diameter of the coil was 1 m; 
and therefore, a/R = ‘I /lOi. The inciined angle of the 
tube axis Q was 0.12 rad (7”). 

The tube was covered with thin asbestos for elec- 
trical insulation, on which nichrome wires were 
wound and used as an electrical heater. The outside 
was insulated with asbestos and glass wool. Inevitable 
heat loss was made uniform by increasing the thick- 
ness of glass wool toward the outlet. The tube was 
thermally insulated from the mixing cups. 

The inlet and outlet temperatures were measured 
in the mixing cups with thermocouples 0.3 mm in 
diameter. Temperatures at the top of the tube wall 
were measured at the Iocations shown in Fig. 17. At 
Iocation No. 6, in particular, four the~o~ouples were 
placed around the tube wall. The result was that no 
difference was detected between their indications. 

Figure 18 shows measured Nusselt number against 
Re Ra with De as a parameter. These results agree 
with the numerical prediction within 30%. A trend 
that the experimental results are fess than the numeri- 
cal ones is found in the figure. This may be attributed 
to underestimating of the outlet temperature due to a 
loss of heat from the mixing cup and/or a thermal 
resistance due to air bubbles attached to the tube wall. 

4. CONCLUSION 

There is a composite region of heat transfer in a 
helically coiled tube in which both the centrifugal and 
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FIG. 18. Experimental results and a comparison with 
equation (30). 

buoyancy forces are significant. Equations (28) and 
(29) give its boundaries if De and Re i& are replaced 
by De cos 01 and & Ra cos a, respectively. The Nusselt 
number in this region can be regarded as a function 
of De Pro.” cos c1 and Re Ra Pr cos 01 alone, so long as 
the inclination angle z is not very large. Equation 
(30) gives an approximate expression for this NusseIt 
number. 
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TRANSFERT THERMIQUE LAMINAIRE DANS UN TUBE EN SERPENTIN 

R&sum&Une etude theorique et experimentale concerne l’effet de l’ecoulement secondaire sur le transfert 
thermique entre un serpentin chauffe uniformement et l’ecoulement laminaire ttabli. On prend en compte 
les forces centrifuges et de pesanteur dans l’analyse numerique. Les solutions couvrent un large domaine 
de nombre de Prandtl. On obtient les profils de vitesse et de temperature, le coefficient de frottement et le 
coefficient de transfert. Les effets de l’ecoulement secondaire sur le transfert thermique sont divisis en trois 
classes : ceux dans le domaine centrifuge, ou flottant ou mixte ; les frontieres sont p&i&es. Une expression 
approchee pour le nombre de Nusselt moyen sur la peripherie est donnee en fonction de deux facteurs 
simples. Une comparaison est faite avec les resultats des experiences utilisant l’eau. On discute l’effet de 

l’inclinaison du tube. 

WARMEtiBERGANG BE1 LAMINARER STRijMUNG IN ROHRWENDELN 

Znsammenfassung-Der Einflul3 der Sekundarstromung auf den Warmeiibergang von einem gewendelten, 
gleichmal3ig beheizten Rohr an eine vollstlndig ausgebildete Laminarstrijmung wurde experimentell und 
theoretisch untersucht. In der numerischen Untersuchung werden sowohl Zentrifugal- als such Auf- 
triebskrafte berticksichtigt. Geschwindigkeits- und Temperaturprofile, Reibungsbeiwert und War- 
meiibergangskoeffizient wurden fur einen weiten Bereich der Prandtl-Zahl berechnet. Der EinfluB der 
Sekundlrstriimung auf den Warmetibergang wurde in drei Bereiche aufgeteilt, einen zentrifugalen, einen 
auftriebsbedingten und einen mit beiden fiberlagerten. Die Grenzen zwischen den Bereichen wurden 
bestimmt. Eine Nlherungsbeziehung fiir die tiber den Umfang gemittelte Nusselt-Zahl im iiberlagerten 
Bereich wird als Funktion zweier einfacher Faktoren angegeben. Die Ergebnisse werden mit Messungen 

mit Wasser verglichen, und der Einflul3 der Steigung des Rohres wird diskutiert. 

JIAMHHAPHbIH TEI-IJTQOEMEH B CHHPAJIbHO 3AKPYHEHHOH TPYBE 

AmroTannn-Teopera%ccKa u 3xcnepu~enranbno uccnenoaaH0 nnmxine BTO~KKH~~O TeKeHHn Ha Ten- 

nOOTna~yOTpaBHOMepHOH~peTOiiCmipaJIbHO3aKpy~eHHOii rpy6r.1 BuOnHOCTbUJpa3BBTOM JKLMUHap- 

~0b4 IlOTOKe. B YHCneHHOM aHanti3e yWTbIBaIOTCn ueHTpO6emHbIe H nonbebnibIe CIiJIbI. PacneTar 

npoBonrTcr B mapoKoM nuana3oHe wcen l-IpaunTnr.~onyneHbI npo&inu cKopocru Ii TebfuepaTypbI, 

K03I$$HuHeHTbITpeHUK aTeIlnOO6MeHa. Bnsrnnue BTO~I~~H~IXT~Y~HI~~I~~T~~IJIOOT~~~~~~JIHTC~H~T~H 

Tuna: o6nacTu npeeanapyEomer0 BJIHKHHK nm6o nonbeMHbIx,nH60 ueHTpO6eXHbIX CHn H CMemaHHaP 

06nacTb; OnpeneneHbI rpaHHubI o6nacTek. npencTaBneH0 npa6nexeHHoe BbIpameHae nnn ocperurea- 

"Or0 rI0 IIepuMeTpy WiCna HyCCenbTa B CMemaHHOii o6nacrn KBK +,‘HKWH JlByX ITpOCTblX +aKTOpOB. 

Hpoaeneno cpaBuemIe c pe3ynbTaTaMa 3KcnepsbfeHTos nnn Kon.bl. 06cyxnaeTcn BnunHae HaKnoua 


