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Abstract—A theoretical and experimental study is carried out on the effect of the secondary flow on heat
transfer from a uniformly heated helically coiled tube to fully developed laminar flow. Both the centrifugal
and buoyancy forces are taken into account in the numerical analysis. The solutions cover a wide range
of Prandtl numbers. The velocity and temperature profiles, the friction factor and heat transfer coefficient
are obtained. The effects of the secondary flow on heat transfer are divided into three types: those in the
centrifugal, the buoyant and the composite range; and the boundaries are determined. An approximate
expression for the peripherally averaged Nusselt number in the composite range is given as a function of
two simple factors. A comparison is made with the results of the experiments using water. The effect of
the inclination of the tube is discussed.

1. INTRODUCTION

HEAT EXCHANGERS equipped with a helically coiled
tube are used in various fields of industry, but forced
convective heat transfer in a tube of this type has not
been adequately studied.

Many experimental and theoretical papers [1-8]
have reported on convective heat transfer in a cir-
cularly curved tube. It has been made clear that the
secondary flow resulting from the centrifugal force
causes the heat transfer coefficient to be significantly
higher than that in a straight tube. The secondary flow
is also induced due to the buoyancy force, even in the
straight tube placed horizontally or inclined, unless
the temperature gradient in a cross section of the tube
is negligible [9, 10].

In the helically-coiled-tube heat exchanger, the sec-
ondary flow is induced mainly by the centrifugal force
(centrifugal range), the buoyancy force (buoyant
range), or by both {composite range), according to
operating conditions. The criterion for the conditions
that distinguish these ranges has been reported by
some investigators [11-13). Prusa and Yao [12] pro-
vided a flow-regime map for a Prandtl number of
unity, and Lee er al. [13] showed a similar map.
These maps are based on the results of the numerical
analyses. Singh and Bell [14] presented an empirical
expression for the heat transfer coefficient in the com-
posite range, but their data scatters widely around the
expression.

This paper mainly describes a theoretical study on
the effect of the secondary flow on heat transfer from
a uniformly heated helically coiled tube to a fully
developed laminar flow. Both the centrifugal force
and the buoyancy force are introduced in the govern-
ing equations. Numerical analysis is extended to cover
a region with higher Prandtl numbers than those in
the previous work by the authors [15]). The velocity
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and temperature profiles, the friction factor and the
heat transfer coefficient are obtained in the composite
range, and the boundaries of the composite range are
expressed by simple relations of two parameters. A
comparison is made with the results of the experiments
using water. The effect of the inclination of the tube
axis is discussed.

2. THEORY AND NUMERICAL ANALYSIS

2.1. Coordinate system and governing equations

The system of coordinates used in this analysis is
shown in Fig. 1. The tube axis is inclined at angle a
with the horizontal plane (the x—y plane). Point A lies
on the tube axis. Coordinate @ is defined as the angle
between OA and Ox, and r and ¢ are the radial and
angular coordinates taken in the circular cross section
perpendicular to the tube axis. Point A’ is the pro-
jection of A on the x—y plane. The angle 6* is that
between 0x and 0A’. Thus, the transformation from
rectangular coordinates (x, y, z coordinates) to curvi-
linear coordinates (r, ¢, 0 coordinates) is given as

x = (R+rcos¢)cos*+rsingsinasin* (1)
y = (R+rcos¢d)sin0*—rsingsinacos0* (2)
z = RB*tano+rsin ¢ cosa. 3
The following assumptions are made.

(1) The fluid flow is steady, and hydrodynamically
and thermally fully developed.

(2) The density variation is considered in the buoy-
ancy term alone, and the other physical properties are
constant.

(3) The wall heat flux is uniform.

(4) The radius of the tube is very small in com-
parison with the coil radius, that is, ¢/R « 1.

(5) Heat conduction in the direction of the tube axis
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NOMENCLATURE
a tube radius u,v,w  velocity components in the r, ¢ and 6
De Dean number, Re,/(a/R) directions
g gravitational acceleration u*,v*, w* components of the dimensionless
h heat transfer coefficient velocity defined by equation (17)
L distance from the start of heating VA L/2a.
Nu Nusselt number, 2ah/A
Nu, Nusselt number in the case where the  Greek symbols
buoyancy force alone acts o inclination angle of the tube axis
Nu, Nusselt number in the case where the B volumetric thermal expansion
centrifugal force alone acts coefficient
Nu, peripheral local Nusselt number A Laplacian operator,
Nu, Nusselt number for Poiseuille flow, o%jer’+ (1/r)djor+(1/r¥)62/o¢?
48/11 A* dimensionless Laplacian operator, see
P pressure equation (16)
Pr Prandtl number, v/x K thermal diffusivity
q heat flux A thermal conductivity
R radius of the coil A friction factor, see equation (10)
Ra Rayleigh number, gfta*/xv v kinematic viscosity
Re Reynolds number, 2aw,,/v £* dimensionless vorticity, A*i*
r,o,0 coordinates p density
r* dimensionless radial coordinate, r/a T axial temperature gradient
T local temperature 1] stream function
T., mixed mean temperature y* dimensionless stream function, y//v.
T, wall temperature
T* dimensionless temperature, Subscripts
(T,—T)/ta Re Pr c center
oT temperature difference, T— T, 0 Poiseuille flow.

F1G. 1. The coordinate system.

is neglected, and the peripheral wall temperature is
uniform.

Employing the curvilinear coordinates explained
above and taking into account the above assumptions
yield the following continuity, momentum and energy
equations :

ou u 1 0v
5+;+;$=0 4)
du vou v cosacosd
U+ - —— — — —
ar rogp r R
1 dp ov
- _;5;+V<Au_2—76¢>+ﬂ(6T)gcosocsm¢

%)

a +2 v uv+cos"asind)
rad) R
1 op v 2 du
= ——%+ (A r—2+r2%>+ﬁ(6ﬂgcosa008¢
(6)
ow vaw _cosa op
ug + 3= R 66*+vAw+ﬁ(5T)gsma Q)

oT v&T wcosa 0T
U—

o rae T R aer AT ®

where u, v and w are the radial, peripheral and axial
components of the fluid velocity, p, p and § are the
pressure, density and volumetric thermal expansion
coefficients of the fluid, respectively, and 8T is the
temperature difference, T—T,.

The peripherally averaged Nusselt number Nu and
friction factor A are defined by

2qa
M= =T @
—4acosa dp
A= pwl  Rdo* (10)

where ¢, T,, T, w, and A are the wall heat flux, wall
temperature, mixed mean temperature, mean axial
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velocity and thermal conductivity of the fluid, respec-
tively.

Upon eliminating the pressure terms in equations
(5) and (6), and introducing the stream function i and
the vorticity of the secondary flow £, the governing
equations are rewritten in dimensionless form as fol-
lows :

1 ay* oy
* _ 1t = _r
r* ¢’ v or* (1)
g = vy 12
a * * a * a %* .
u* a_f; + f_* % = A*¢* 4+ 1De? cos? a<?;:; sin ¢
* aT*
+%cos«b)—-ReRacosa(r*a(bsind)
oT*
—FCOS(P) (13)
ow*  v* ow* Re cosa Op*
* I Adk T P
W T e AT T3 R o
—2RaT*sina (14)
oT* ov* 0T*
where
0? 1 9 1 82
A =gt gt 5 (16)
A L S R
a a v Wi
(17
T,—T p v a’
. _ W7 * £ . * L
T waRepr ? pwi’ 4 v’ ¢ vé

The dimensionless parameters Re, Ra, De and Pr are
the Reynolds, Rayleigh, Dean and Prandtl numbers,
respectively.

Equations (9) and (10) can be rewritten as

1
—4coso dp*
A TR {19
The boundary conditions can be written as
wEk=T*=y*=0, *=05*or** at r*=1
(20

w*, T* y* &%  are finite at r* = 0.

The centrifugal and buoyancy contributions are
contained in the second and third terms on the right-
hand side of equation (13), namely, the momentum
equation for the secondary flow. The third term on
the right-hand side of equation (14) represents the
effect of the component of the buoyancy force in the
direction of the tube axis.

Control
Volume

o main node
¢ sub-node

F1G. 2. Numerical grids and control volume.

2.2. Numerical method and computational procedure

-Equations (13)-(15) become the unsteady-state
equations by adding the time derivatives of &*, w*
and T*, respectively. Then, the control volume
approach is used to derive the finite-difference equa-
tions. The steady-state solution is obtained as an
asymptotic solution of this unsteady system of equa-
tions. Figure 2 shows the mesh system and a control
volume for the numerical calculation. Each surface of
the control volume exists at the midpoint between the
main nodes across a grid axis. The radial velocity u
or the ¢-component v is calculated at the subnode on
the surface. The direction of the velocity is per-
pendicular to the surface. The upwind difference is
applied to the convection term. This discretization
concept is equivalent to the tank and tube concept by
Gosman et al. [16].

The radial and angular coordinates are divided into
20 and 26 intervals, respectively (henceforth, this grid
size is represented by 20x26). The grid spacing is
equal in the ¢-direction. In the r-direction it is
unequal, since or;/ér,, = 1.1. This grid size was
chosen after some calculations were tried with 30 x 34
and 40x26 mesh systems (6r,/6r;,, = 1.02). The
boundary condition, equation (20), is converted into

YRy

ory

w=Tk =y%,=0, &,=3 —0.5&% 1,

@n

The value of boundary vorticity is estimated by the
second-order form [17, 18]. The governing equations
(11)—(15) cannot be used at the center because of their
singularities. Therefore, equations (14) and (15) are
written with the Cartesian coordinates at the center.
Stream function and vorticity are obtained by aver-
aging the values at all the neighboring grids.

There are two alternative expressions for Nusselt
number. One, which already has been given as equa-
tion (18), is obtained from the energy balance in the
direction of the tube axis. This Nusselt number is
denoted by MNu,. Another is obtained based on the
temperature gradient at the tube wall, and is denoted
by Nu,. Thus, one obtains

= (oT*
LGE)

Ni =
Ha nT¥*

22)
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A Ra =0

Numerical solution
Eq. (24)

Nuc /Nug

T T T T 1T

Akityama , Cheng

Kalb , Seoder Seben,

Mchu’ghlin

10 102 10®
DepPr054

Fic. 3. Dependence of the Nusselt number on De Pr®>* for
Ra=0.

The mean value of Nu, and Nu, is adopted as the
peripherally averaged Nusselt number Nu. The
difference between Nu, and Nu, is concerned with
the accuracy of the numerical solution. The relative
difference | Nu, — Nu,|/Nu, is less than 0.03 in this cal-
culation.

An implicit scheme is used at each time step, and
converged solutions are obtained by iteration. Actu-
ally, several iterations are executed, since this pro-
cedure does not require fully convergent values at
each step. Arriving at the steady-state condition, only
one iteration is enough to satisfy the following error
criterion :

max ([F"+ ! — F|/|F"* 1)) < 1075 23)

2.3. Numerical results and discussion

2.3.1. Numerical resuits for a = 0. Figure 3 shows
Nu,/Nu, against De Pr®**, where Nu, denotes the
Nusselt number for Ra =0 and Nu, is the Nusselt
number for Poiseuille flow in a straight tube. Since
the secondary flow is induced only by the centrifugal
force, the Nusselt number can be expressed as a func-
tion of Dean and Prandt] numbers. It can be seen that
Nu,/Nu, is well correlated with (De Pr®>%)%> Thus, a
correlation is derived as

(Nuc>6 0.5410.516
= 14+[0.195(De Pr°>%)">1°. 24)
Nu,

The power of the Dean number is equal to Mori and
Nakayama’s [1] theoretical result using the boundary
layer approximation. Numerical results obtained by
Akiyama and Cheng [3] and Kalb and Seader [6] are
also shown for Pr = 1 in Fig. 3. Experimental results
for the various Prandtl numbers given by Singh and
Bell [14], and given by Seban and McLaughlin [2] are
drawn. Singh and Bell’s results are for /R = 41.7 and
Pr = 100, whereas they reported a little dependence
upon coil geometry a/R. Seban and McLaughlin
reported Nuy max and Nug i, which were obtained at
the outer and inner tube walls, respectively. We have
used their mean values, assuming Pr = 100. Seban
and McLaughlin’s result is lower than our correlation.
However, this discrepancy is not necessarily sig-
nificant, since the mean value (Nugmay + Nty min) /2 is

(<] u A~ -
s Lo 1 ] De =0
N I~ © 5 ! Numerical
Py - ®100 J solution
25 | o500
- Eq. (25)
1 | SNET R ST AT S R S | Lol
103 104 105 108 107
ReRaFr
FiG. 4. Dependence of the Nusselt number on Re Ra Pr for
De = 0.

less than the peripherally averaged Nusselt number
by a factor of 0.8 (Fig. 8(a)).

Figure 4 shows the variation of Nu,/Nu, with
Re Ra Pr, where Nu, is the Nusselt number when
De = 0. Secondary flow is induced only by the buoy-
ancy force. Eventually, the Nusselt number is equal
to that in the heated straight tube. Applying the
boundary layer approximation, Mori and Futagami
[19] had a result that the Nusselt number was pro-
portional to (Re Ra)®?in the large Re Ra region. Now
we propose the following correlation which is appli-
cable in the whole Re Ra Pr region:

Nuy, - 0.214.5
o 1+[0.19(Re Ra Pr)*]*5.  (25)

Our results agree well with the numerical results given
by Hwang and Cheng [9].

Some computed streamlines for secondary flow,
isotherms and isometries of the axial velocity are
shown in Fig. 5 for Pr = 1 and in Fig. 6 for Pr = 100.
The value of Re Ra Pr increases from (a) to (c) with
De Pr®3* kept constant. In the case of Ra = 0 (Figs.
5(a) and 6(a)), only the centrifugal force is induced.
Therefore, streamlines, etc. are symmetrical with
respect to the horizontal centerline. They rotate clock-
wise as Ra increases and the buoyancy effect becomes
significant. As Re Ra Pr becomes much larger, they
tend to be symmetrical with respect to the vertical
centerline.

The profiles of the streamlines, etc. are also depen-
dent on the Prandtl number. If Pr = 1, the isometry of
Y* = 0 remains a straight line in the rotating process
mentioned above. However, in the case of Pr = 100,
it is distorted near the stagnation point where the
secondary flow strikes the tube wall. The low-tem-
perature region, where the magnitude of the dimen-
sionless temperature is large, exists in the vicinity of
the outer wall for Ra = 0 and Pr = 1 (Fig. 5(a)). This
region moves clockwise with increasing Re Ra Pr. For
Pr=100, if Ra=0, two low-temperature regions
(large dimensionless temperature) exist separately
near the centers of the upper and lower halves. The
upper low-temperature region disappears as Re Ra Pr
is increased. The low-temperature region is located
between ¢ = = and 3/2xn. The isotherms for Pr = 100
are greatly skewed compared with those for Pr = 1.
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é=x|0

(inner)

(inner)

(b) Defr054=120, ReRaPr=1.4x105,

p=n

(inner)

(c) DePrO34=120, ReRaPr=3x105,

Pr=1

T T

Pr=1

FiG. 5. Streamlines for secondary flow (on the left), isotherms (in the middle) and isometries of the axial
velocity (on the right); Pr=1.

Figures 7 and 8 show the peripheral variations of
the relative local Nusselt number Nu,/Nu,. The angle
at the maximum and minimum of Nu,/Nu,is 0 and =
for Ra = 0, respectively. These points rotate clockwise
as Re Ra Pr is increased. In the case of Pr =1, the
profile remains almost symmetrical with respect to the
Nty max—Nuiy min line, even if rotation occurs. However,
for Pr = 100, the symmetrical profile cannot be seen.
The magnitude of the rotation for Nu ., is greater
than that for Nuy .

Figure 9 shows the variation of the friction factor
with De and Re Ra. Our results agree well with Ito’s
correlation [20] for Ra = 0 where the buoyancy force
is absent. Ito’s correlation is an asymptotic one to
which the friction factor should approach as the Dean
number increases, that is, the buoyancy force becomes
less effective. If the Dean number decreases, then the
buoyancy force becomes dominant, and, conse-
quently, the friction factor becomes a function of
Re Ra alone. Therefore, if the value of ReRa is
constant, another asymptotic correlation should be
A/A, = const. In Fig. 9, a transitional region can be
seen between these two asymptotes. Both the cen-

trifugal and buoyancy forces are effective in this
region. It can also be seen that A/A, in the transitional
region is larger than that for Ra =0 and that for
De =0.

Figure 10 shows Nu/Nu, against De Pr®>* with
Re Ra Pr as a parameter. If De Pr®** becomes smaller,
the Nusselt number has an asymptotic value depen-
dent only on Re RaPr. This asymptotic value has
been given by equation (25). On the other hand, with
increasing Dean number, Nu/Nu, tends to approach
the value calculated from equation (24). The tran-
sitional region exists for the Nusselt number as well
as the friction factor. The above result is well approxi-
mated by the following correlation in the whole range

of De Pr®34
4 N 47]1/4
—1)+(N—:—1>J . (26

1+ Nu,
- Nug

Now, it is useful to obtain the boundaries of the
following three ranges: (a) the centrifugal force is
dominant ; (b) both the centrifugal and buoyancy for-
ces are effective (composite range) ; (c) the buoyancy

Nu
Nuo
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() DePr954=120, ReRaFr=3x105, Pr=100

FIG. 6. Streamlines for the secondary flow (on the left), isotherms (in the middle) and isometries of the
axial velocity (on the right) ; Pr = 100.

DePr 984 =120, Fr=1

—__—
ReRaF =1.4x10°

ReRa ReRaFr =3x10°

Nu/Nug=2.12

Nug /Nug Nu/Mig=2.23

Nuy/Nug Nu/Nug=2.43

Ny /Nug

U

(inner)

$=0
(outer)

D)z

N

(a)

(b)

(c)

FiG. 7. Distributions of the relative peripheral local Nusselt numbers (Pr = 1).

force is dominant. The transitional region in the pre-
vious paragraphs is the same as the composite range.
Boundary Bl is that which divides ranges (a) and (b),
and B2 is the boundary which divides (b) and (c). As
seen from Fig. 10, there are no obvious distinctions
between the two neighboring ranges. Therefore, the
authors define these boundaries by

INucomp — Nttgonol/ Nttmone = 0.02 @7
where the subscript ‘mono’ means the range where
either force is dominant, and the subscript ‘comp’
means the composite range.

The points on boundary B1 are plotted in Fig. 11,
and the points on boundary B2 in Fig. 12. The equa-
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DeFr %4 =120, A =100

ReRaFr =0 ReRaPr =1.4x10° ReRaFr =3x10%
N/ Nug=2.09 5/ Ny N/ Nug =215 Nuy/Nug Nu/Niug=2.36 Nuy /Nug
=x #=0
xS T3 T2]5 3 TR (Suter)
(a) (b) (c)
Fi1G. 8. Distributions of the relative peripheral local Nusselt numbers (Pr = 100).
g P

(-3 a .
40 R
< ] | 9 o0

3 10 ® 500  Dperr95=0,8156(ReRuFr)0386

Ito

- ReRa=2x103
[ 4x104
" [ 4x1o7[

108

® Ra=0

Loy 1l L eyl

10 102 10°
De

Fi1G. 9. Dependence of the relative friction factor on De with
Re Ra as a parameter.

§4 ® A=
2 o P =100
33
= ReRaPr =4x10%
[—O—e
2L 108
4x104
a4
10 » % —— Eq (26)
2x10°
1 [l L Loy ] L I
10 102
Depr 054

FiG. 10. Dependence of the relative Nusselt number on
De Pr%** with Re Ra Pr as a parameter.

A
o 1
g [ 2}
g [
3 - DAP-O58 =1 055(ReRaPr) 242!
102
10 1 s bl Lo aagsl 1 (IS
103 104 10%

ReRaFr
FiG. 11. Boundary B1 in the De Pr®**-Re Ra Pr plane.

tions representing the boundaries can be obtained by
the least-squares method as follows :
Bl: DePr®3® = 1.055(Re Ra Pr)®*?!
B2: DePr®° = 0.8156(Re Ra Pr)®3®S,

(28)
(29)

T T TT771]

L]l 1
103 104 105
ReRaFr

FiG. 12. Boundary B2 in the De Pr®**-Re Ra Pr plane.

T RN PE| 1 a1 3t

10 L

DeFr 054

10 | TR
108 104 108

FIG. 13. A contour map showing the heat transfer ranges.

It is noted that the power of the Prandtl number is
0.58 and 0.5 on the left-hand side of equations (28)
and (29), respectively. They are different from the
power which has been used in equation (24).

A contour map showing the heat transfer ranges is
shown in Fig. 13. De Pr®** and Re Ra Pr chosen as
the axes are the same parameters as used in equations
(24) and (25), respectively. Each contour in the figure
has a horizontal asymptote on which the buoyancy
force does not act, and it has a vertical asymptote on
which the centrifugal force does not act. Boundaries
Bl and B2 are drawn. The shaded area between them
is the composite range. B1 and B2 are affected by the
Prandtl number, and the composite range becomes
narrow as Pr is increased. This result is caused by the
difference in the power of Pr between De Pr%3® in
equation (28) and De Pr®*® in equation (29).

It is of interest to know the angle at which the
peripherally local Nusselt number Nu, has a
maximum and minimum in the composite range.
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F1G. 14. Variation of the peripheral angle at which the
peripheral local Nusselt number takes a minimum value.
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FiG. 15. Variation of the peripheral angle at which the
peripheral local Nusselt number takes a maximum value.

These angles are denoted by ¢,,., and ¢, respec-
tively. Some examples of the distribution of Nu, are
shown in Figs. 7 and 8.

As shown in Fig. 14, ¢, is represented as a function
of Re Ra Pr/(De Pr®*%*° ¢... is equal to = (inner
wall) when the buoyancy force does not act, and
decreases to #/2 (top) as it becomes significant. As for
Pr = 1, ¢,;, correlates well with this parameter alone.

Figure 15 shows the variation of @,... @Pmax 1S 27
(outer wall) when the buoyancy force is absent, and
is asymptotic to 1.5% (bottom) as it becomes
dominant. In the case of Pr =1, ¢,,, can be fairly
well correlated with Re Ra Pr/(De Pr®3%*° alone.
Thus, ¢.x is nearly opposite to ¢, as shown in Fig.
7. However, as Pr becomes large, ¢,,., cannot be a
function of one parameter only. If De Pr®** becomes
larger, ¢... decreases to less than 1.5z and then
increases to approach it.

2.3.2. The effect of the inclination of the tube
axis. As estimated from equation (13) Decosa and
Re Racos a should be used instead of De and Re Ra,
respectively, in the case of o # 0. Thus Nu/Nu, is
shown in Fig. 16 against De Pr®**cosa with Re Ra
Prcosux as a parameter, where o and a/R are fixed as
constants, namely, /4 and 0.01, respectively. It seems
that as De becomes smaller, the relative Nusselt num-
ber has a minimum and then continues to increase.
However, this continuous increase is not due to the
decrease in De, but to a resulting increase in Ra. If
a/R, a and Re Ra are constant, Ra increases as De
and accordingly Re are decreased. The increase in Ra
results in an increase in the third term on the right-
hand side of equation (14) since o is positive, and
causes the increase of the Nusselt number in the low
De region.

It is of note that the third term of equation (14)

and Y. AOYAMA

o4 F
=] a/R=0.01, a=7n/4
N i ReRaPr cosa=10% —2xi04
3 3 6x104 _ 104
| 4xi0% /
— [
2 b o= .
*— O (]
TR - ® Fr=t
- o Ar=10
~—Ra =0 — Eq.{30}
1 It 1l 1 1 L {1 i1l L L 1
10 10

DePr®54cosa

FiG. 16. The effect of the inclination on relative Nusselt
number in a helically coiled tube (« = n/4).

mentioned above represents the tube-axial component
of the buoyancy force. In the case of & < 0, the Nusselt
number will decrease as De is decreased, since the
axial component of the buoyancy force acts on the
fluid against the axial flow and becomes relatively
significant. Futagami and Abe [10] ascertained for an
inclined straight tube where De was zero but Ra was
finite that the Nusselt number decreased as the incli-
nation angle became negative.

If Re Ra Prand De Pr®>*are constant, Ra decreases
as Pr is increased, consequently, the relative Nusselt
number for Pr = 10 takes a lower value than that for
Pr = 1. The solid line in Fig. 16 is a plot of the fol-

lowing approximate equation :
4771/4
I oo

Nu, ' [ Nu,
1 -1 — —1
+ I:(Nu0 ) + (Nuo

Nuc ¥ 0.54 0.516
Nu, = 1+[0.195(De Pr***cos)*°1° (31)

Nu _
Nug ~

where

Nuy, - 0.214.5
—— | = 1+4[0.19(Re Ra Prcosa)™“1*>. (32)
NuO

Equation (30) is the same as equation (26) except that
Decosa and Re Racosa are used in the expressions
for Nu./Nu, and Nu,/Nu, instead of De and Re Ra,
respectively. This equation expressed well the relative
Nusselt number at least in the centrifugal and com-
posite ranges. As a decreases, equation (30) becomes
valid even in the buoyant range. Usually, the incli-
nation angle is less than m/4 in a practical heat ex-
changer. Therefore, equation (30) will be applicable
in all the ranges. Equations (28) and (29) can be used
to express boundaries Bl and B2 if De and Re Ra are
replaced by Decosa and Re Racos o, respectively.

3. EXPERIMENTS

Experiments of heat transfer were performed with
water under the conditions of constant heat flux and
fully developed flow. The parameters ranged so as to
cover the composite range.
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Thermocouple
1:2=1.0
2:2=26.5
3:2=53.9

A 4:2=80.0
1 R=800mm o ’ 5:2=159.9
e Mx d 4 6:7=239.9
8 9x —— . 7:2=291.0
e ixing cup 8:2=305.5
6 X e 9:7=319.9
= . 10:2=349.2
= | 11:2=359.3
Head tank e L) (z=1/2a)
Deaerator D —— —
Flow control : —= 4
Mixin 3 >
! valve cup 9 11 I
\~——-~—~+-——1L-—-+—b———- —n -
Fi16. 17. A schematic diagram of the experimental apparatus.
F
3.1.'Apparatus and procedure o s ST T: A s
Figure 17 shows the schematic diagram of the 3 a 25-38)8 75- 100 =012
experimental apparatus. Water is supplied from the 3 rle ss-s8  prrocmeso
head tank. It flows through a deaerator, a flow control
valve, an inlet mixing cup, a helically coiled tube and Decasa=50 o
an outlet mixing cup before being discharged. The 2 r o 33og’
helically coiled tube was fabricated from a straight Dgcasa=30 3
tube of copper with a devised bender, and hence, its Seces@=0 — R0
cross-section was almost perfectly circular. The tube L ”*’3 boddtd PSSR ””‘5 b
had a 9.9 mm i.d., a wall thickness of 1.2 mm and a 1a 10 roe cosg
length of 3.56 m. The diameter ?f ﬂf‘e coit was 1 m; g5 18 Experimental results and a comparison with
and therefore, a/R = 1/101. The inclined angle of the equation {30},

tube axis « was 0.12 rad (7°).

The tube was covered with thin asbestos for elec-
trical insulation, on which nichrome wires were
wound and used as an electrical heater. The outside
was insulated with asbestos and glass wool. Inevitable
heat loss was made uniform by increasing the thick-
ness of glass wool toward the outlet. The tube was
thermally insulated from the mixing cups.

The inlet and outlet temperatures were measured
in the mixing cups with thermocouples 0.3 mm in
diameter. Temperatures at the top of the tube wall
were measured at the locations shown in Fig. 17. At
location No. 6, in particular, four thermocouples were
placed around the tube wall. The result was that no
difference was detected between their indications.

3.2. Experimental results

Figure 18 shows measured Nusselt number against
Re Ra with De as a parameter. These results agree
with the numerical prediction within 30%. A trend
that the experimental results are less than the numeri-
cal ones is found in the figure. This may be attributed
to underestimating of the outlet temperature due to a
loss of heat from the mixing cup and/or a thermal
resistance due to air bubbles attached to the tube wall.

4. CONCLUSION

There is a composite region of heat transfer in a
helically coiled tube in which both the centrifugal and

buoyancy forces are significant. Equations (28) and
(29) give its boundaries if De and Re Ra are replaced
by Decosa and Re Racosa, respectively. The Nusselt
number in this region can be regarded as a function
of De Pr®**cosa and Re Ra Prcos o alone, so long as
the inclination angle « is not very large. Equation
(30) gives an approximate expression for this Nusselt
number.
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TRANSFERT THERMIQUE LAMINAIRE DANS UN TUBE EN SERPENTIN

Résumé—Une étude théorique et expérimentale concerne I'effet de I’écoulement secondaire sur le transfert
thermique entre un serpentin chauffé uniformément et ’écoulement laminaire établi. On prend en compte
les forces centrifuges et de pesanteur dans I'analyse numeérique. Les solutions couvrent un large domaine
de nombre de Prandtl. On obtient les profils de vitesse et de température, le coefficient de frottement et le
coefficient de transfert. Les effets de 'écoulement secondaire sur le transfert thermique sont divisés en trois
classes : ceux dans le domaine centrifuge, ou flottant ou mixte ; les frontiéres sont précisées. Une expression
approchée pour le nombre de Nusselt moyen sur la périphérie est donnée en fonction de deux facteurs
simples. Une comparaison est faite avec les résultats des expériences utilisant ’eau. On discute I'effet de
I'inclinaison du tube.

WARMEUBERGANG BEI LAMINARER STROMUNG IN ROHRWENDELN

Zusammenfassung—Der Einfluf der Sekundérstrémung auf den Wirmeiibergang von einem gewendelten,
gleichmiBig beheizten Rohr an eine vollstindig ausgebildete Laminarstrémung wurde experimentell und
theoretisch untersucht. In der numerischen Untersuchung werden sowohl Zentrifugal- als auch Auf-
triebskrifte beriicksichtigt. Geschwindigkeits- und Temperaturprofile, Reibungsbeiwert und Wér-
metibergangskoeffizient wurden fiir einen weiten Bereich der Prandtl-Zahl berechnet. Der EinfluB der
Sekundirstréomung auf den Wirmeiibergang wurde in drei Bereiche aufgeteilt, einen zentrifugalen, einen
auftriebsbedingten und einen mit beiden iiberlagerten. Die Grenzen zwischen den Bereichen wurden
bestimmt. Eine Niherungsbeziehung fir die Gber den Umfang gemittelte Nusselt-Zahl im iiberlagerten
Bereich wird als Funktion zweier einfacher Faktoren angegeben. Die Ergebnisse werden mit Messungen
mit Wasser verglichen, und der EinfluB der Steigung des Rohres wird diskutiert.

JAMUWHAPHBIA TEIUIOOBMEH B CIIMPAJIBHO 3AKPYUYEHHOU TPYBE

Amnoraums—TeopeTHYECKH U IKCIIEPUMERTAJIBHO HCCIENOBAHO BIIMAHMEC BTOPHYHOTO TEYCHHA HA Teml-
J0OTAa4y OT PABHOMEPHO HarperToif CMpaibHO 3aKpy4YeHHOH TPYOBl B MOJHOCTBIO PA3BUTOM JIaMyHAP-
HOM MOTOKE. B YHC/IEHHOM aHAJNH3¢ YYHTBIBAIOTCH UEHTPOOGEKHBIE H MONBLEMHBIC CHJbL. PacuerTn
NpOBOASTCA B LIMPOKOM ManasoHe uucen ITpanarna. IMonyuens! npoduiM CKOPOCTH ¥ TEMIEPATYPHI,
k03 dHUMEHTH TPEHHUS ¥ Teioo6MeHa. Bnusuue BTOPHYHBIX TEUCHHHA HAa TEIUIOOTAAYY HEJIMTCA Ha TPH
THNA: 061aCTH NPEeBANHPYIOIEro BIHAHHA JMGO0 NOABEMHBIX, MHGO UEHTPOGEKHBIX CHII B CMEIIAHHAS
ob1acTb; onpeneiieHb! rpaHuubl obnactelf. Tlpeacrasieno npHOMMXEHHOE BLIPAXEHHE [UIS OCPEIHEH-
Horo 1o mepumetpy 4ucna HyccenbTa B cMelnanHoii o61acTH Kak QYHKIHH ABYX MPOCThIX (akTopos.
IpoBeneno cpaBHEHHE C Pe3yNbTaTaAMM IKCNEPAMEHTOB I Boibl. OOGCyXaaeTcs BiMsHUE HAKJIOHA

TpyOBI.



